Sparse Vectors ======================== In this section we explore some useful properties of :math:`\Sigma_k`, the set of :math:`k`-sparse signals in standard basis for :math:`\mathbb{C}^n`. We recall that .. math:: \Sigma_k = \{ x \in \mathbb{C}^n : \| x \|_0 \leq k \}. This set is a union of :math:`\binom{n}{k}` subspaces of :math:`\mathbb{C}^n` each of which is is constructed by an index set :math:`\Lambda \subset \{1, \dots, n \}` with :math:`| \Lambda | = k` choosing :math:`k` specific dimensions of :math:`\mathbb{C}^n`. We first present some lemmas which connect the :math:`l_1`, :math:`l_2` and :math:`l_{\infty}` norms of vectors in :math:`\Sigma_k`. .. _lem:u_sigma_k_norms: .. lemma:: Suppose :math:`u \in \Sigma_k`. Then .. math:: \frac{\| u\|_1}{\sqrt{k}} \leq \| u \|_2 \leq \sqrt{k} \| u \|_{\infty}. .. proof:: We can write :math:`l_1` norm as .. math:: \| u \|_1 = \langle u, \sgn (u) \rangle. By Cauchy-Schwartz inequality we have .. math:: \langle u, \sgn (u) \rangle \leq \| u \|_2 \| \sgn (u) \|_2 Since :math:`u \in \Sigma_k`, :math:`\sgn(u)` can have at most :math:`k` non-zero values each with magnitude 1. Thus, we have .. math:: \| \sgn (u) \|_2^2 \leq k \implies \| \sgn (u) \|_2 \leq \sqrt{k} Thus we get the lower bound .. math:: \| u \|_1 \leq \| u \|_2 \sqrt{k} \implies \frac{\| u \|_1}{\sqrt{k}} \leq \| u \|_2. Now :math:`| u_i | \leq \max(| u_i |) = \| u \|_{\infty}`. So we have .. math:: \| u \|_2^2 = \sum_{i= 1}^{n} | u_i |^2 \leq k \| u \|_{\infty}^2 since there are only :math:`k` non-zero terms in the expansion of :math:`\| u \|_2^2`. This establishes the upper bound: .. math:: \| u \|_2 \leq \sqrt{k} \| u \|_{\infty}