cr-sparse

Navigation

Contents:

  • Quick Start
  • Introduction
  • Tutorials
  • API Docs
  • Algorithms
  • Theory
  • Examples Gallery
  • References
  • Development

Related Topics

  • Documentation overview
    • Next: Quick Start

Quick search

CR-Sparse¶

A JAX/XLA based library of accelerated models and algorithms for inverse problems in sparse representation and compressive sensing. GITHUB.

Contents:

  • Quick Start
    • Platform Support
    • Installation
    • Examples
  • Introduction
    • Sparse approximation and recovery problems
    • Functional Programming
    • Linear Operators
    • Greedy Sparse Recovery/Approximation Algorithms
    • Convex Optimization based Recovery Algorithms
    • Evaluation Framework
    • Open Source Credits
    • Further Reading
  • Tutorials
    • Dirac Cosine Dictionaries
    • Alternating direction algorithms for l1 problems in compressive sensing
  • API Docs
    • Digital Signal Processing
    • Wavelets
    • Linear Operators
    • Sparse Linear Systems
    • Sparsifying Dictionaries and Sensing Matrices
    • Greedy Sparse Recovery
    • L1 Minimization
    • Optimization
    • First Order Conic Solvers
    • Compressive Sensing
    • Data Clustering
    • Sparse Subspace Clustering
    • Sample Data Generation Utilities
    • Utilities
    • Geophysical Signal Processing
    • Computer Vision and Image Processing
    • Evaluation Framework
  • Algorithms
    • Sparse recovery algorithms
  • Theory
    • Linear Algebra
    • Sparse Linear Systems
    • Introduction to Sparse Subspace Clustering
    • Fourier and Wavelet Representations
    • Acronyms
  • Examples Gallery
    • Data Clustering
    • Linear Operators
    • Compressive Sensing
    • Sparse Recovery via L1 minimization
    • Wavelets
  • References
  • Development
    • Source Code
    • Limitations
    • Benchmarks
    • Change Log

Indices and tables¶

  • Index

  • Module Index

  • Search Page

©2021, CR-Sparse Development Team. | Powered by Sphinx 4.0.0 & Alabaster 0.7.12 | Page source
Fork me on GitHub